Thursday, May 23, 2019

Programming a Netronome network card (inside a VM) from command line

This is the same card(s) we got to work inside a vm guest using the magic of PCI passthrough. Netronome wants us to use a Windows-only IDE to do development work in it while the card is placed in a Linux box we can reach; some of its features remind me of the IDE Google has for Androids, which allows you to run an emulator and do some real time debugging. The difference is the Google one works in Linux, Windows, and Mac, and it only requires one computer (which could be remotely accessed).

Do we really need to use the Netronome SDK? I guess it depends on what we want to do. For now, let's see if we can get something running using command line only to the point we can compile in Micro-C and run something in the card.


Get the packages

  1. First we need a few packages available for either CentOS or Ubuntu.
    Note: The Netronome Linux SDK officially only support CentOS and Ubuntu. So we will only be covering those distros.
    • Ubuntu:
      apt-get install libftdi1 libjansson4 build-essential \
       linux-headers-`uname -r` dkms git
    • CentOS: (Still using yum; will do a dnf version when I feel like.
      yum -y install epel-release && yum update -y
      yum -y install libftdi jansson pciutils kernel-devel dkms wget git

    Netronome does require you to have an account to get the SDK packages. I can't help with that; what I can tell you is that once I got the account I downloaded everything which was available at the time I wrote this article:

    raub@desktop:~$ ls Downloads/netronome/
    SDK
    agilio-nfp-driver-dkms-2018.01.11.2333.f40482a-1.el7.noarch.rpm
    agilio-nfp-driver-dkms_2018.01.11.2333.f40482a_all.deb
    firmware
    readme
    raub@desktop:~$ ls Downloads/netronome/SDK/
    6.0.4.1 6.1.0.1
    raub@desktop:~$ ls Downloads/netronome/SDK/6.1.0.1/
    nfp-sdk-6.1.0.1-preview-3286-setup.exe
    nfp-sdk-6.1.0.1_preview-0-3243.x86_64.rpm
    nfp-sdk-p4-rte-6.1.0.1-preview-3202.centos.x86_64.tar
    nfp-sdk-p4-rte-6.1.0.1-preview-3214.ubuntu.x86_64.tar
    nfp-sdk-sim-6.1.0.0-preview-3179.x86_64.tar
    nfp-sdk_6.1.0.1-preview-3243-2_amd64.deb
    nfp-toolchain-6.1.0.1-preview-3243.x86_64.tar
    raub@desktop:~$

    and then copied them all to the development vm guest we created in the previous article, desktop1

    What are those files? I put what I have gathered about their function in the readme file (it covers the old file version but it should get an idea):
    Programmer Studio IDE
    nfp-sdk-6.0.4.1-3276-setup.exe - Windows
    
    Run Time Environment (RTE)
    nfp-sdk-p4-rte-6.0.4.1-3195.ubuntu.x86_64.tgz
    nfp-sdk-p4-rte-6.0.4.1-3191.centos.x86_64.tgz
    
    Hosted Toolchain (to be used with BSP and SmartNIC)
    nfp-sdk_6.0.4.1-3227-2_amd64.deb
    nfp-sdk-6.0.4.1-0-3227.x86_64.rpm
    
    NFP Simulator
    nfp-sdk-sim-6.0.4.1-3177.x86_64.tgz
    
    Hosted Toolchain (to be used with NFP Simulator)
    nfp-toolchain-6.0.4.1-3227.x86_64.tgz
    Note: There are two versions of the SDK. Just pick the latest.
  2. Then install the basic SDK
    • Ubuntu:
      sudo dpkg -i nfp-sdk_6.1.0.1-preview-3243-2_amd64.deb
    • CentOS:
      sudo rpm -ivh nfp-sdk-6.1.0.1_preview-0-3243.x86_64.rpm

    This creates a /opt/netronome directory.

  3. And add to the path where the binaries will be installed.
    cat >> ~/.bash_profile << 'EOF'
    
    # Netronome SDK
    PATH=$PATH:/opt/netronome/bin
    export PATH
    EOF
    source ~/.bash_profile
    Note: If the user you are building your code on does not have rights to write to the card, you should edit the root's .bash_profile file as well.
  4. We do need the Netronome modified but open source nfp driver which has the development features (specificially, it has a nfp_dev_cpp option we will need to expose the low-level user space access ABIs of non-netdev mode) we need. So, we install it, which requires installing the Netronome repo:

    • Ubuntu:
      wget https://deb.netronome.com/gpg/NetronomePublic.key
      apt-key add NetronomePublic.key
      add-apt-repository "deb https://deb.netronome.com/apt stable main"
      apt-get update
      apt-get install agilio-nfp-driver-dkms
    • CentOS:
      wget https://rpm.netronome.com/gpg/NetronomePublic.key
      rpm --import NetronomePublic.key
      cat << 'EOF' > /etc/yum.repos.d/netronome.repo
      [netronome]
      name=netronome
      baseurl=https://rpm.netronome.com/repos/centos/
      gpgcheck=0
      enabled=1
      EOF
      yum makecache
      yum install -y agilio-nfp-driver-dkms --nogpgcheck
    and then reboot.
  5. Now we can install the RTE
    • Ubuntu:
      tar xvf nfp-sdk-p4-rte-6.1.0.1-preview-3214.ubuntu.x86_64.tar
      cd nfp-sdk-6-rte-v6.1.0.1-preview-Ubuntu-Release-r2750-2018-10-10-ubuntu.binary/
      sudo ./sdk6_rte_install.sh install
    • CentOS:
      tar xvf nfp-sdk-p4-rte-6.1.0.1-preview-3202.centos.x86_64.tar
      cd nfp-sdk-6-rte-v6.1.0.1-preview-CentOS-Release-r2749-2018-10-09-centos.binary/
      sudo ./sdk6_rte_install.sh install
    This should cause /opt/netronome/bin/ to fill with many more files; this is a good way to check progress.
    NOTE:Chances are It will get pissed:
    [...]
    Loaded plugins: fastestmirror
    Examining /home/centos/netronome/SDK/6.1.0.1/nfp-sdk-6-rte-v6.1.0.1-preview-CentOS-Release-r2749-2018-10-09-centos.binary/dependencies/nfp-bsp/rpm//nfp-bsp-dkms_2018.08.17.1104_all.rpm: nfp-bsp-dkms-2018.08.17.1104-1dkms.noarch
    Marking /home/centos/netronome/SDK/6.1.0.1/nfp-sdk-6-rte-v6.1.0.1-preview-CentOS-Release-r2749-2018-10-09-centos.binary/dependencies/nfp-bsp/rpm//nfp-bsp-dkms_2018.08.17.1104_all.rpm to be installed
    Resolving Dependencies
    --> Running transaction check
    ---> Package nfp-bsp-dkms.noarch 0:2018.08.17.1104-1dkms will be installed
    --> Processing Conflict: agilio-nfp-driver-dkms-2019.04.02.0225.bf81349-1.el7.noarch conflicts nfp-bsp-dkms
    Loading mirror speeds from cached hostfile
     * base: packages.oit.ncsu.edu
     * epel: mirror.umd.edu
     * extras: packages.oit.ncsu.edu
     * updates: packages.oit.ncsu.edu
    No package matched to upgrade: nfp-bsp-dkms
    --> Finished Dependency Resolution
    Error: agilio-nfp-driver-dkms conflicts with nfp-bsp-dkms-2018.08.17.1104-1dkms.noarch
     You could try using --skip-broken to work around the problem
     You could try running: rpm -Va --nofiles --nodigest
    Error! There are no instances of module: nfp-bsp-dkms
    located in the DKMS tree.
    [centos@desktop1 nfp-sdk-6-rte-v6.1.0.1-preview-CentOS-Release-r2749-2018-10-09-centos.binary]$
    but it will get over and will work fine.
  6. Ensure that nfp_dev_cpp = 1
    theuser@desktop1:~$ cat /sys/module/nfp/parameters/nfp_dev_cpp
    1
    theuser@desktop1:~$ 

    If not, say, yet get an error message like this

    [theuser@desktop1 ~]# cat /sys/module/nfp/parameters/nfp_dev_cpp
    cat: /sys/module/nfp/parameters/nfp_dev_cpp: No such file or directory
    [theuser@desktop1 ~]#

    uninstall nfp and install it back with the option set. There are ways to load said option at boot time; I will leave that as an exercise to the reader.

    theuser@desktop1:~$ sudo modprobe -r -v nfp && sudo modprobe nfp nfp_dev_cpp=1
    theuser@desktop1:~$
  7. Ensure nfp-hwinfo is talking to the card. The expected outcome should look like this:
    theuser@desktop1:~$ sudo /opt/netronome/bin/nfp-hwinfo
    nfp.interface=pci.0.0
    nfp.model=0x40010010
    nfp.serial=00:15:4d:13:5d:2b
    board.exec=bootloader.bin
    uart.baud=115200
    preinit.setup.version=nfp-bsp-6000-b0 (4ef1e19ba176)
    pcie0.type=ep
    assembly.revision=11
    assembly.model=lithium
    assembly.partno=AMDA0096-0001
    assembly.serial=17290647
    assembly.vendor=SMC
    ddr0.spd=spi:1:0:0x3F0F00
    ddr1.spd=spi:1:0:0x3F0F00
    ddr2.spd=none
    ddr3.spd=none
    ddr4.spd=none
    ddr5.spd=none
    emu1.type=cache
    emu2.type=cache
    ethm.mac=00:15:4d:13:5d:2b
    eth.mac=00:15:4d:13:5d:2c
    eth.macs=2
    vpd=fis:1:0:vpd.bin
    board.setup.version=nfp-bsp-6000-b0 (4ef1e19ba176)
    chip.model=NFP4001
    chip.revision=B0
    core.speed=633
    me.speed=633
    arm.speed=475
    chip.model.device=0x62006c20
    chip.identifier=0x219b8546c
    chip.model.hard=0x5
    chip.model.soft=0x40010096
    chip.route=0xc96f1e8e
    chip.island=0x1001f13000112
    mem.setup.version=nfp-bsp-6000-b0 (4ef1e19ba176)
    ddr0.mem.size=1024
    ddr1.mem.size=1024
    ddr0.mem.speed=1600
    ddr1.mem.speed=1600
    emu0.mem.size=2048
    emu0.mem.base=0x2000000000
    emu1.mem.size=3
    [...]
    theuser@desktop1:~$

    If it looks like this:

    theuser@desktop1:~$ sudo /opt/netronome/bin/nfp-hwinfo
    /opt/netronome/bin/nfp-hwinfo: Failed to open NFP device 0 (No such device)
    Please check that:
     -lspci -d 19ee: shows atleast one Netronome device
     -the nfp device number is correct
     -the user has read and write permissions to the Netronome device
     -the nfp.ko module is loaded
     -the nfp_dev_cpp option is enabled (please try modinfo nfp to see all params)
    theuser@desktop1:~$ 
    stop, do not continue. Go back and check if nfp_dev_cpp = 1 and also if the vm was configured to support PCIe cards. Do not continue until you have checked and addressed these two items.

Coding, at last!

This Hello World was stolen from the Netronome appropriately named Hello World example. I will be rushing through it, concentrating on getting it to compile and showing some common issues. Lookup on the example docs for what each line does.

  1. So we create our hello world project using lab_template as the, well, template.
    mkdir dev
    cd dev
    git clone https://github.com/open-nfpsw/c_packetprocessing.git
    cd c_packetprocessing/apps/
    cp -r lab_template lab_hello_world
    cd lab_hello_world
    NOTE: This creates a ~/dev/c_packetprocessing/apps/lab_hello_world directory. If you want to move it to a different location, edit the line
    ROOT_SRC_DIR  ?= $(realpath $(app_src_dir)/../..)
    in the Makefile.
  2. So far the hello world directory looks rather bare:

    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$ ls
    Makefile  README
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$

    so let's start populating it.

    cat > hello_world.c << 'EOF'
    #include <nfp.h>
    __declspec(ctm) int old[] = {1,2,3,4,5,6,7,8,9,10};
    __declspec(ctm) int new[sizeof(old)/sizeof(int)];
    
    int main(void)
    {
            if (__ctx() == 0)
            {
                    int i, size;
                    size = sizeof(old)/sizeof(int);
                    for (i=0; i < size; i++)
                    {
                            new[i] = old[size - i - 1];
                    }
            }
            return 0;
    }
    EOF
  3. We add a few lines to the makefile. Their explanation is listed in.

    sed -i -e '/^# Application definition starts here/ a\
    $(eval $(call micro_c.compile_with_rtl,hello_world_obj,hello_world.c)) \
    $(eval $(call fw.add_obj,hello_world,hello_world_obj,i32.me0 i32.me1)) \
    $(eval $(call fw.link_with_rtsyms,hello_world))' Makefile
  4. Time for some compiling!

    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$ make
    /opt/netronome/bin/nfcc -Fo/home/theuser/dev/c_packetprocessing/apps/lab_hello_world/ -Fe/home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world_obj.list -W3 -chip nfp-4xxx-b0 -Qspill=7 -Qnn_mode=1 -Qno_decl_volatile -single_dram_signal -Qnctx_mode=8 -I. -I/home/theuser/dev/c_packetprocessing/microc/include -I/home/theuser/dev/c_packetprocessing/microc/lib   /opt/netronome/components/standardlibrary/microc/src/rtl.c /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world.c
    /opt/netronome/bin/nfld -chip nfp-4xxx-b0 -mip -rtsyms -o /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world.fw -map /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world.map -u i32.me0 /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world_obj.list -u i32.me1 /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world_obj.list
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$

    which creates a few intermediate files:

    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$ ls
    hello_world.c   hello_world.map  hello_world_obj.list  README
    hello_world.fw  hello_world.obj  Makefile              rtl.obj
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$ cat hello_world.map
    Memory Map file: /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world.map
    Date: Tue May  7 10:39:30 2019
    
    nfld version: 6.0.4.1,  NFFW: /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world.fw
    
    Address       Region     ByteSize        Symbol
    ===================================================
    0x0000000000800000    i24.emem      108                 .mip
    0x0000000000000000    i32.ctm       704                 i32.me0.ctm_40$tls
    0x00000000000002c0    i32.ctm       704                 i32.me1.ctm_40$tls
    
    ImportVar                       Uninitialized Value
    ===================================================
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$
  5. Next upload the firmware we created into the card. This needs to be run either as root or as an user who can write to card.
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world# make load_hello_world
    nfp-nffw load --no-start /home/theuser/dev/c_packetprocessing/apps/lab_hello_world/hello_world.fw
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world#
    NOTE: If you see the following error message
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$ make load_hello_world
    nfp-nffw load --no-start /home/centos/dev/c_packetprocessing/apps/lab_hello_world/hello_world.fw
    nfp-nffw: Failed to open NFP device 0 (No such device)
    Please check that:
     -lspci -d 19ee: shows atleast one Netronome device
     -the nfp device number is correct
     -the user has read and write permissions to the Netronome device
     -the nfp.ko module is loaded
     -the nfp_dev_cpp option is enabled (please try modinfo nfp to see all params)
    nfp-nffw: Command 'load' failed
    make: *** [load_hello_world] Error 1
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$
    ou should check if
    • If you are running make load_hello_world as user who can write to the card.
    • nfp_dev_cpp = 1
    • the vm was configured to support PCIe cards.
    Go back in this document for instructions on how to do so.

    Now, if you see this error message

    [F] nfp6000_nffw.c:4643: Firmware already loaded. Unload first.
    Failed to load firmware: Operation not permitted
    nfp-nffw: Command 'load' failed
    Makefile:43: recipe for target 'load_hello_world' failed
    either you or someone else had already loaded firmware into the card. All you have to do is unload it
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$ nfp-nffw unload
    theuser@desktop1:~/dev/c_packetprocessing/apps/lab_hello_world$
    and then run make load_hello_world again.

  6. In the hello world instructions, the next step is to see the card memory since later on we will be writing to it. So, here is it.
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world# nfp-rtsym --len 176 i32.me0.ctm_40\$tls:0
    0x0000000000:  0x00000001 0x00000002 0x00000003 0x00000004
    0x0000000010:  0x00000005 0x00000006 0x00000007 0x00000008
    0x0000000020:  0x00000009 0x0000000a 0x00000000 0x00000000
    0x0000000030:  0x00000000 0x00000000 0x00000000 0x00000000
    *
    0x0000000050:  0x00000000 0x00000000 0x00000001 0x00000002
    0x0000000060:  0x00000003 0x00000004 0x00000005 0x00000006
    0x0000000070:  0x00000007 0x00000008 0x00000009 0x0000000a
    0x0000000080:  0x00000000 0x00000000 0x00000000 0x00000000
    *
    
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world#
  7. Unleash the code so it does things:
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world# make fw_start
    nfp-nffw start
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world# 
  8. If things were successfully done, we now can see the memory contents have changed:
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world# nfp-rtsym --len 176 i32.me0.ctm_40\$tls:0
    0x0000000000:  0x00000001 0x00000002 0x00000003 0x00000004
    0x0000000010:  0x00000005 0x00000006 0x00000007 0x00000008
    0x0000000020:  0x00000009 0x0000000a 0x00000000 0x00000000
    0x0000000030:  0x0000000a 0x00000009 0x00000008 0x00000007
    0x0000000040:  0x00000006 0x00000005 0x00000004 0x00000003
    0x0000000050:  0x00000002 0x00000001 0x00000001 0x00000002
    0x0000000060:  0x00000003 0x00000004 0x00000005 0x00000006
    0x0000000070:  0x00000007 0x00000008 0x00000009 0x0000000a
    0x0000000080:  0x00000000 0x00000000 0x00000000 0x00000000
    *
    
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world#
  9. Don't forget to unload the firmware by typing nfp-nffw unload!
  10. Checking that we are done
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world# nfp-rtsym --len 176 i32.me0.ctm_40\$tls:0
    No runtime symbol named 'i32.me0.ctm_40$tls'
    root@desktop1:/home/theuser/dev/c_packetprocessing/apps/lab_hello_world#

So congratulations! You not only installed the SDK and wrote and ran your first Netronome program! You may want to look into the Network Flow C Compiler User's Guide for further info on what you can do; I would put the link but right on the front page it states it is Proprietary and Confidential.

Next time we will do some openflow or P4 coding. Don't ask me to tell which one will be because I have not decided yet. Brain hurts!

What about the simulator? Maybe one day.

No comments: